Mathematical Logic

SEC-I

Raibatak Sen Gupta

Asst. Professor Bejoy Narayan Mahavidyalaya

Logic

- Mathematical proofs, or more specifically, mathematical arguments depend on reasoning.
- From a set of axioms, or a set of assumptions, a mathematician applies reasoning to argue systematically and study the validity of arguments, consistency of situations and arrive at a decision regarding the truth of some statement.
- Logic is the system of tool of this reasoning.

Deductions

 Logic is all about deducing an inference by using reasoning, and equivalently, checking the truth/falsehood of a statement.

 A statement (or system of statements) is held logically true if it is true when the premises logically lead to them and if there is no inherent inconsistency in them.

Propositions

- In Mathematics, one deals with statements/assertions that can be either true or false (but not both, or not ambiguous). Such statements are called propositions.
- There might be ambiguous statements or statements which do not come under the category of strictly true/ false in literature, but mathematical logic is not applicable there.

Examples and non-examples of propositions

• The following are all propositions:

(i) Logic and Sets is a course in SEC in SEM-III.(ii) RSG teaches the Logic course in BNMV.(iii) 20 students have taken the Logic elective in BNMV.

 However, the following statements, exclamatory or imperative in nature, cannot be judged for truth/falsehood, and hence are not propositions:

(i) What a wonderful shot by Sachin !

(ii) Go and bring a bottle of water please.

Simple and complex propositions

• The propositions stated so far are simple/primitive in nature in the sense that they cannot be divided into simpler propositions. However, we can come across propositions such as the following:

(i) He is not doing what is good for him.

(ii) if it rains, I will not go out.

- (iii) The cyclist hit the man and drove on.
- (iv) I will go to Darjeeling or Puri.
- (v) One gets the prize if and only if one scores 90%.

Each of these can be further resolved into propositions and hence they are called complex propositions.

Logical connectives

 Complex propositions are formed by applying logical connectives to simple propositions. These logical connectives are derived from natural language, but act a little differently in certain respects (although the purpose is more or less the same).

Logical connectives

- The most frequently used logical connectives are
 - (i) And (Conjunction)
 - (ii) Or (Disjunction)
 - (iii) if... then (Implication)
 - (iv) not (negation)
 - (v) if and only if (Biconditional)

Truth table for And

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Truth table for Or

р	q	pvq
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Truth table for if, then

р	q	p→q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Equivalent truth table for if, then

р	q	~p	$\sim p \lor q$
Т	Т	F	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Truth table for Not

р	~p
Τ	F
F	Т

Truth table for if and only if

р	q	p⇔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Truth table for nor

р	q	$p \downarrow q$
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

Truth table for XOR

р	q	p⊻q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Truth table for Logically true/false

